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A broad variety of materials, ranging from composites and heat transfer nano-fluids to electrochem-
ical energy storage electrodes, widely employ cylindrical particles of various aspect ratios, such as
carbon nanotubes. These particles are generally excellent conductors of heat and electricity and when
dispersed in a continuous medium influence dramatically the transport properties of the heterogeneous
material by forming a percolating network. Numerous theories exist to predict key parameters such as
particle concentration at the percolation threshold and transport properties at concentrations beyond
the threshold. The microstructure formed by connecting particles in the material is an important deter-
minant toward such parameters but often requires complex numerical models to resolve. In this paper,
we present an analytical, probabilistic model capturing the microstructure of a system of randomly
positioned, soft-core, cylindrical particles with a finite aspect ratio, valid at arbitrary particle concen-
tration. Our analytical framework allows for the calculation of the particle contact number distribution
and percolation probability of the particle system. We show that our analytical model is more accu-
rate than excluded volume theory for predicting the percolation threshold for spherocylinders of finite
aspect ratios, and agrees well with the corresponding numerical results. Our theory describes the perco-
lating network topology above the percolation threshold and can serve as the foundation for analytical
composition-structure-property relationships for heterogeneous materials with conducting cylindrical
particles. Published by AIP Publishing. https://doi.org/10.1063/1.5041326

I. INTRODUCTION

Numerous engineered materials involve the addition of a
particulate electrically conductive solid phase to an insulat-
ing solid or fluid supporting phase. This addition can greatly
improve the electric or heat conductivity compared to the con-
tinuous phase alone, often by many orders of magnitude.1,2

At a certain particle concentration known as the percola-
tion threshold, an interconnected particle network spans the
material. This is sometimes referred to more specifically as
geometric percolation, as it does not necessarily coincide
with electron transport spanning the discontinuous particle
phase. The presence of thin layers of the insulating sup-
porting phase at the point of contact between conductive
particles can inhibit electric percolation, even at concentra-
tions beyond that of geometric percolation. Thus, the result-
ing transport properties of the heterogeneous material are
determined by both the microstructure of the percolating net-
work and also the particulars of the transport mechanism
between individual particles in this network (e.g., electron
tunneling).3,4

One prominent example of such materials is nanocom-
posites,5–7 in which nanoscale conductive filler particles are
mixed together with a polymer, and the mixture is solidi-
fied into the composite. Nanocomposites are used as struc-
tural elements with the filler network serving as an in-built

a)Authors to whom correspondence should be addressed: Anatoly.Golovnev@
gmail.com and mesuss@me.technion.ac.il

electromagnetic interference shield, such as in aircraft.8

Another example is the emerging use of flowable electrodes
in electrochemical systems which store energy or desali-
nate water.9–12 In such systems, conductive particles are sus-
pended in an electrically insulating yet ionically conductive
electrolyte, and the entire suspension is pumped through a
charging or discharging cell. Electrons transport through the
percolating network formed by the solid particles, in order
to capacitively charge the solid particles or allow for local
electrochemical reactions at solid-liquid interfaces. While
such flowable electrodes are dynamic at the micro(particle)
level, they nonetheless can deliver time-invariant transport
properties on the system level. Thus, the network structure-
material function relationships underpinning static nanocom-
posites may also form a useful basis for describing flowable
electrodes.

Once such a heterogeneous material attains electric
percolation, the addition of conductive particles generally
increases the network’s interconnectivity, which improves the
materials overall conductivity. However, in practice, there
is an upper limit to particle concentration. In the case of
nanocomposites, it is desirable to maintain the structural
characteristics of the polymer, and thus particle concentra-
tion must be kept low, often less than 1 vol. %.5 For a
flowable electrode, the suspension viscosity increases with
increasing particle loading, and above roughly 10 vol. %, the
suspension behaves as a gel and is no longer able to be
pumped effectively.13 Thus, conductive particles with high
aspect ratios, such as carbon nanotubes (CNTs), are widely
used for these applications as they generally possess very
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low percolation thresholds while enabling among the high-
est measured material conductivities to date.2,14 In order
to maximize performance within often-strict particle load-
ing constraints, it is crucial to develop accurate and sim-
ple relationships between the particle aspect ratio and load-
ing to the percolation threshold and percolating network
conductivity.15

Despite the importance of microstructures toward deter-
mining bulk properties of the heterogeneous material, most
theories do not explicitly consider microstructures or alter-
natively use complex numerical models to resolve the
microstructure. For example, the widely used excluded vol-
ume theory16–18 assigns to each particle a volume within
which the centres of other particles cannot enter, called the
excluded volume. When a particle intrudes the excluded vol-
ume of another particle, it is assumed that the two particles
come in contact. At a certain particle concentration, the parti-
cles’ excluded volumes fill up all space and begin to overlap,
which is considered to be the onset of percolation. The lat-
ter provides a simple analytical prediction of the percolation
threshold but does not explicitly account for the microstructure
formed by the conductive particles. As a result, excluded vol-
ume theory generally underestimates the measured value for
the percolation threshold, although gaining accuracy as the
particle aspect ratio rises.18 Alternatively, the connectedness
percolation theory16,19,20 makes use of the Ornstein-Zernike
equation which was originally applied to describe the molec-
ular structure of liquids. This theory expresses the average
particle cluster size via the so-called pair connectedness func-
tion which describes the probability that two particles at a
certain distance from each other belong to the same cluster.
When the average cluster size diverges, percolation begins.
The connectedness percolation theory and the excluded vol-
ume theory agree that the percolation threshold concentration
is inversely proportional to the particle aspect ratio but dis-
agree on the influence of dispersity of particle lengths on
the percolation threshold.19 Also, both the excluded volume
and connectedness percolation theories predict only a perco-
lation threshold and do not predict network topology or mate-
rial properties at particle concentrations of interest above the
threshold.

Toward predicting electric conductivity of percolating
heterogenous materials, one widely used model invokes the
scaling hypothesis, which states that at the vicinity of the
percolation threshold, the conductivity scales as the power
law,21,22 σ = σ0(ψ−ψp)t . Hereσ is the heterogeneous material
conductivity, σ0 is a prefactor, ψ is the volume loading of con-
ductive particles,ψp is the loading at the percolation threshold,
and t is the exponent. The exponent is predicted to be between
1.2 and 2, with a smaller exponent predicted for increased
aspect ratios.23,25 By contrast, experiments have yielded vary-
ing and significantly higher exponents of best fit,5 up to 10,
which is generally attributed to the effect of interparticle resis-
tances rendering a portion of the geometrically percolating
network effectively unable to accept electric charge.1 Apart
from the scaling hypothesis, various effective medium approx-
imations have been adopted.23,27,28 Such models employ the
formalism of graph theory and usually are very advanced math-
ematically. They make various predictions depending on the

approximation chosen. Another cause of uncertainty comes
from modeling a resistance of contacts between particles,
which is essential only for finding electric conductivity and
believed to be due to electron tunneling.29 However, the main
disadvantage of the models reviewed above is that they account
only implicitly, or sometimes even completely neglect, the
suspension microstructure which is responsible for composite
material bulk properties.26,32

We here develop an analytical probabilistic model which
captures explicitly the microstructure of suspensions of high
aspect ratio rods, valid over a wide range of particle con-
centrations: below and above the percolation threshold. In
Sec. II, we derive the distribution of contacts between par-
ticles. In Sec. III, we discuss the particle cluster size distri-
bution, including the infinite cluster which is the percolation
network. We find how many particles the network consists
of and how interconnected, or how “dense,” the network is.
Via accounting for network microstructures analytically, we
can predict the percolation threshold with significantly more
accuracy than excluded volume theory and reproduce the pre-
dicted percolation threshold attained via numerical models. In
the future, the analytical model presented here can be used
as a foundation to predict various macroscopic properties
of heterogeneous materials employing high aspect ratio con-
ductive particles, such as electric conductivity or suspension
viscosity.

II. PARTICLE CONTACT NUMBER DISTRIBUTION

Let us consider a system of independent, non-interacting,
identical, cylindrical particles with diameter d and length l
suspended in an inert medium. The particles are randomly
positioned and randomly oriented. The aim of this section is
to find the contact number distribution, Pψ(k), which is the
fraction of particles having contacts with k other particles at
a given particle volume fraction, ψ, defined as the volume
of all particles divided by the total volume of the heteroge-
neous system. Following from the definition,

∑∞
k=0 Pψ(k) = 1

at any ψ. We assume that the system dimension is several
orders of magnitude larger than the particle dimension. There-
fore, even for dynamic networks where particles are in motion,
we expect that fluctuations of Pψ(k) in time are negligible and
Pψ(k) can be considered as time independent. At a snapshot,
Pψ(k) can also be interpreted as the probability that a ran-
domly chosen particle has k contacts in both dynamic and
static networks. Throughout the paper, we will use both the
definitions for Pψ(k) interchangeably. In terms of the the-
ory of random graphs, Pψ(k) is called a degree distribution
and k is called a degree of a node, where a node denotes a
particle.30

Let us pick randomly one particle and call it the target
particle. To position other particles, we place the end of each
particle at a randomly chosen point in space, called the pin-
point, and then rotate the particle by a random angle; see Fig. 1.
Because the angle is chosen randomly, it is irrelevant which
particle end is taken as the pinpoint. For hard-core particles,
not every angle is accessible since particles cannot overlap.
In the present paper, we assume that particles are penetrable
(called soft-core or ideal particles). Thus here, if the placed
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FIG. 1. Schematic of the access volume (shaded gray) consisting of a target
particle (in red) and selected placed particles (in black) with an aspect ratio
of l/d = 50. Particle 3 is in contact with the target particle, while particles 1,
2, and 4 are not in contact.

particle intersects the target particle, we define it as a particle
contact. It was demonstrated by simulations31 that the per-
colation threshold concentration for soft-core and hard-core
rods is noticeably different. In the present work, we are lay-
ing the foundation of a new approach and therefore consider
only ideal particles as the simplest and most straightforward
case.

Let us count how many contacts the target particle has.
Because l is finite, only a limited amount of particles can reach
the target particle, namely, the particles whose pinpoints are
located not farther than l from the target particle. We call the
set of such pinpoints the access volume which is a capped
cylinder with radius l drawn around the target particle; see
Fig. 1. The access volume is given by V0 = πl2 ·l+ 4

3πl3 = 7
3πl3

and contains N + 1 particles: one target particle and N other
particles. We define that a particle lies in the access volume if
and only if its pinpoint is in the access volume. By definition,
the particle volume fraction is ψ ≡

(N+1)Vp

V0
, where Vp is the

volume of one particle. Hence,

N =
28
3
ψ

(
l
d

)2

− 1. (1)

Later in this section, we will show that for relevant ψ the unity
term can be neglected. Because N and ψ have a one-to-one
relation, we will use PN (k) and Pψ(k) interchangeably.

Penetrability of particles makes positioning of one par-
ticle independent of positions of other particles. Therefore,
instead of placing N particles one-by-one making sure they
do not overlap, we can place one particle N times in a row.
In the framework of probability theory, each placing is called
a Bernoulli trial because it has only two possible outcomes:
particles either come in contact or not.33 Let p be the proba-
bility that at one trial the placed particle touches the target
particle. Hence, (1 − p) is the probability that the particle
misses the target particle. A sequence of independent Bernoulli
trials is called a Bernoulli process. In terms of Bernoulli pro-
cesses, PN (k) is the probability that out of N trials the target
particle is hit exactly k times. Thus,33 PN (k) is the binomial

distribution,

PN (k) =
N!

k!(N − k)!
pk(1 − p)N−k . (2)

Now we shall find the probability that the placed parti-
cle touches the target particle, p. The placed particle can have
many different configurations, i.e., orientations and positions.
Only some of them correspond to a contact. If these configura-
tions were discrete and equiprobable, then the probability p is
defined as a ratio of the number of configurations correspond-
ing to a contact to the number of all possible configurations.
Because coordinates and angles are continuous variables, we
introduce a configuration space,

p ≡
F
Ω

, (3)

where F is the volume of configuration space corresponding
to a contact and Ω is the total volume of configuration space,

Ω =

∫∫∫ ∫∫
dx dy dz sin(θ)dθ dϕ, (4)

where the Cartesian coordinates (x, y, z) set the particle pin-
point position, the spherical coordinate angles (θ, ϕ) set the
particle orientation, and the integral is taken over all pos-
sible values of (x, y, z, θ, ϕ). The multiplier sin(θ) origi-
nates from the spherical coordinate Jacobian. It assures that
the probability of the placed particle being directed within
a certain solid angle is proportional to the solid angle open-
ing and independent of its orientation. The integral over the
position coordinates is the volume of the access volume,
∫ ∫ ∫ dxdydz = V0. Because θ changes from 0 to π, and ϕ runs
from 0 to 2π, ∫ ∫ sin(θ)dθdϕ = 4π. Hence,

Ω =
28
3
π2l3. (5)

To find F, we need to take the same integral from Eq. (4)
but this time only over the configurations (x, y, z, θ, ϕ) that
lead to a particle contact. Obviously, not every configuration
qualifies because, for example, two particles can be skew. This
rather technical procedure, which requires simple but extensive
geometrical construction, can be found in the supplementary
material. Here we proceed already with the final result,

F = 4

(
π −

7
6

)
πd l2. (6)

Note that F contains the excluded volume, V ex; see
Refs. 17 and 18 for V ex. Indeed, to draw the excluded vol-
ume, the tip of the placed particle should slide on the tar-
get particle. All such configurations of the placed particle
comprise the excluded volume. F consists of all these “tip
touch” configurations plus the configurations where the placed
particle touches the target particles with its side. Therefore,
F > V ex always. (F = V ex for spheres, which is not considered
in the present paper.) For thick rods, “side touch” and “tip
touch” correspond to different (θ, ϕ). However, in the thin rod
limit, (θ, ϕ) for side and tip touches become almost the same,
making F and V ex the same functional dependence, V ex ∼ d l2.
Still, in this limit “side touches” bring additional configura-
tions due to different (x, y, z) which are not present in “tip
touches,” making F > V ex because of the larger prefactor.

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-149-005839
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-149-005839
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Using Eqs. (3), (5), and (6), we find the probability of
particle contact at one Bernoulli trial,

p =
6π − 7

14π2

(
d
l

)
≈ 0.270

(
d
l

)
. (7)

If l/d > 30, the smallest aspect ratio considered in the present
paper, then p< 0.01. In this limit, a simpler Poisson distribution
can be used,33 with a good accuracy even at arbitrary low N.
Hence, Eq. (2) becomes

PN (k) ≈
(pN)k

k!
exp(−pN). (8)

Note that there is only one parameter in Eq. (8), pN. There-
fore, our model predicts that this is the only parameter which
defines the size and topology of the percolation network or
any other cluster. An ideologically similar result is known
in graph theory where the emergence of a certain kind of a
cluster, called the giant component, is governed by the same
parameter.30 Because this parameter is so important, we will
introduce a special letter for it,α≡ pN, and will call it “adjusted
concentration.” From Eqs. (1) and (7),

α ≡ pN =
2
3

(
6π − 7
π

)
ψ

l
d
≈ 2.515ψ

l
d

. (9)

The mathematical meaning of α is the expected value of
PN (k).33 Because α is the only variable in Eq. (8), it suggests
a scaling relation, in that the system topology is identical for
constant adjusted concentration. Such a relation was already
derived in the framework of the random contact model and the
excluded volume theory,37 stating that ψ l

d is proportional to
the average number of contacts per particle, however, without
stating explicitly that topological properties of the system are
defined by this parameter. Also, our derivation is more funda-
mental because it is based only on the assumption of particle
random positioning. One specific case of this scaling law is
well known, namely, the excluded volume theory states18 that
the percolation threshold occurs when ψ l

d = 0.5. Inserting
l/d = 30 and ψ l

d = 0.5 into Eq. (1) gives N = 140, meaning
that the unity term in Eq. (1) can be neglected.

III. PERCOLATION NETWORK

In Sec. II, we described the environment of a single parti-
cle. In the present section, we will deal with particle clusters.
Following Sec. II, we know that the target particle has a prob-
ability PN (k) of having k contacts. Let us call these k particles
a step zero. The step zero particles touch the target particle and
k1 other particles. These k1 particles are step one. Each of the
step one particles has one or more contacts to the correspond-
ing step zero particles and also may have some other contacts.
Only these latter contacts belong to the step two. If we con-
tinue our “walk” and find that we can make an infinite number
of steps, then the target particle belongs to the percolation net-
work. If at a certain step there are no contacts to a subsequent
step, then the target particle belongs to a finite cluster. Note
that particles in proceeding steps appear with a probability,
meaning that the ability to make each step is not certain. There-
fore, if we happen to circle a geometric loop of particles, each

proceeding circle will have a smaller probability, and eventu-
ally the probability of being able to keep circling the loop will
shrink to zero. To be able to keep “walking” infinitely, new
particles should keep appearing on our path, which is possi-
ble only on an infinite cluster. Because our procedure allows
for multiple counting, it is not appropriate toward determin-
ing properties of finite clusters, such as a finite cluster size.
Our procedure has an analogy to a Bethe lattice,34,35 except
that in a Bethe lattice the number of particles in each step is
predetermined and multiple counting is forbidden.

Let Pk ,n(w) be the probability that in step w there are
n particles, given there are k particles in step 0. Pk ,n(w) are
the elements of a matrix πw which fully describes the tran-
sition from step 0 to step w. Let us consider π1. Since we
do not restrict the number of contacts a particle can have
(the probabilities of an unrealistically high number of con-
tacts are infinitesimal), π1 has an infinite amount of rows and
columns which are numbered from 0 to infinity. Furthermore,
P0,0(1) = 1 and P0,n(1) = 0 if n , 0. Although the number of
particles in step zero is directly defined by PN (k), the number
of particles in all proceeding steps, Pk ,n(w) where w ≥ 1, obeys
a different distribution and should employ conditional prob-
ability since each particle must have at least one contact to a
previous step particle. Thus, for k = 1, the number of particles
in step one is given by

P1,n(1) = PN (n + 1|has at least one contact) (10)

with the condition imposed on the step zero particle indicated
behind the vertical bar. Here the step zero particle has n + 1
contacts: n contacts to step one particles and one mandatory
contact to the target particle. According to the Kolmogorov
definition of conditional probability,33

P1,n(1) =
PN (n + 1)
1 − PN (0)

=
1

(n + 1)!
αn+1e−α

(1 − e−α)
, (11)

where 1 − PN (0) is the probability for a particle to have at
least one contact. In the supplementary material, we derive the
general expression needed to complete all entries to π1,

Pk,n(1) =
Σk

l=1(−1)k+l
(

k
l

)
ln+k

(n + k)!
αn+ke−k α

(1 − e−α)k
. (12)

Equation (12) implies that the number of step one particles
is determined only by the number of step zero particles. By
the construction of our “walk,” the just considered transition
from step 0 to step 1 is not different from any further transi-
tion. Indeed, the amount of step w + 1 particles is set by the
step w particles for an arbitrary w ≥ 0, based on the same
distribution, Eq. (12). In probability theory, a sequence of
such equivalent transitions is called a simple Markov chain,
for which πw = πw1 .33 Hence in principal, Eq. (12) is suf-
ficient to find πw completely. One can significantly simplify
the calculations needed by recognizing that we only require
Pk ,0(w), as this represents the final step w along a finite par-
ticle cluster. In other words, Pk ,0(w) gives the probability that
the target particle does not belong to the percolation network.
In the supplementary material, we derive a recurrence relation

Pk,0(w + 1) =

(
eαP1,0(w) − 1

P1,0(w)(eα − 1)

)k

. (13)

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-149-005839
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-149-005839
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The expression in the brackets in Eq. (13) is independent
of k and equals P1,0(w + 1). Hence, Pk ,0(w) = P1,0(w)k ,
which has a simple physical interpretation. Each step zero
particle is a potential path to connect to the percolation net-
work which breaks off with the probability P1,0(w) ≤ 1.
Hence, k independent paths break off with the probability
P1,0(w)k ≤ P1,0(w), which mathematically demonstrates that
particles with a higher number of contacts, i.e., with higher k,
are more probable to belong to the percolation network.

In Fig. 2, P1,0(w) found from Eq. (13) is plotted for various
w as a function of particle concentration. One can see that the
recurrence relation given by Eq. (13) converges at w → ∞.
P1,0(500) coincides with P1,0(10 000) on the scale of the figure
and therefore can be taken as an approximation for P1,0(∞).
Physically, the difference between P1,0(w1) and P1,0(w2) is
due to the clusters which have more than w1 but less than w2

steps. For example, at the adjusted concentration α = 3, all
finite clusters consist of no more than 5 steps. Around α = 1.2,
the difference between P1,0(5) and P1,0(20) is significant and
roughly 0.08. By contrast, the difference between P1,0(20) and
P1,0(50) is negligibly small, indicating a small population of
clusters with steps between 20 and 50.

The flat and the decreasing parts of P1,0(500) in Fig. 2
are two branches of the solution to Eq. (13) found at w →∞.
As shown in the supplementary material, P1,0(∞) cannot be
expressed analytically; hence it is not exponential. However,
P1,0(∞), as well as P1,0(500), can be fit excellently above a
percolation threshold by a sum of two exponentials,

f (α) = 9.24e−2.205α + 2.91e−0.873α. (14)

Such a functional form might have been expected intuitively,
though not predicted rigorously. Complex disordered systems,
such as networks and also glasses, which might resemble net-
works due to the lack of long-range order,36 usually exhibit
two exponential processes: one fast and one slow. To fit
P1,0(∞) at every α, we will use the Heaviside step function,
H(α),

P1,0(∞) = f (α) + [1 − f (α)]H(1.6 − α). (15)

FIG. 2. Probability that the walk along a cluster ends after w steps, P1,0(w),
provided that there is only one particle in step zero; see Eq. (13). The upper
axis is the adjusted concentration α. The lower axis is the particle volume
fraction times particle aspect ratio; see Eq. (9).

In Fig. 2, the sharp elbow of P1,0(500) from unity to
less than unity signifies the appearance of an infinite clus-
ter and, thus, defines the percolation threshold at α ≈ 1.6
(see the supplementary material for the calculation of its posi-
tion). In Fig. 3, we compare our theoretical prediction for the
percolation threshold with the excluded volume theory and
with the data taken from Ref. 18 where several numerical and
experimental studies were fit by the curve

ψnum
c =

(
1 + 3.2

(
2l
d

)0.46
)

π
2

d
l + 2 l

d + (3 + π)
≈ 0.5

(
l
d

)−1
*
,
1 + 3.2

(
2l
d

)0.46
+
-
.

(16)

The denominator in the exact formulation in Eq. (16) is the
exact prediction of the excluded volume theory (blue curve in
Fig. 3), and the numerator is the result of the fitting (dashed
black curve). This curve also fits well the simulations per-
formed in Ref. 31 for ideal rods, depicted in Fig. 3 of Ref. 31.
The curve ψex

c = 0.5(l/d)−1, which corresponds to αex
c ≈ 1.26

as per Eq. (9), is the excluded volume theory prediction for a
percolation threshold in the high aspect ratio limit (red curve).
Figure 3 shows that the percolation threshold predicted by our
theory, α = 1.6 which is ψ = 0.63(l/d)−1, matches excellently
the numerical results and holds down to as low as an aspect
ratio of 30, giving a reasonably adequate prediction even at
l/d = 10. This speaks toward the fine capture of the physical
phenomenon by our theory, which might come a bit surprising
in the close vicinity of the percolation threshold because per-
colation is a critical phenomenon; hence, collective behavior
plays a crucial role.24 At the critical point, i.e., the percola-
tion threshold, the average cluster size diverges. Close to the
critical point, cluster sizes vary from just a few particles to
nearly infinite, an effect called critical fluctuations. Micro-
scopic approaches as ours considering single particles might
be expected to have difficulty dealing with critical fluctua-
tions. Probably, the difficulties are avoided due to the felicitous
method of counting particles. Also, the fit of excluded volume
theory to simulation data performed in Ref. 23 suggests that
the number of contacts per particle at the percolation threshold

FIG. 3. Predicted particle volume fraction at the percolation threshold as a
function of particle aspect ratio. The data fit is taken from Ref. 18. Our theory
curve obeys ψ(l/d) = 0.63 or equivalently α = 1.6. For the other curves, see
Eq. (16).

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-149-005839
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-149-005839
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is 1.2, whereas our theory predicts 1.6 since α is the expected
value of Pψ(k). Note in Fig. 3 that excluded volume theory
indeed underpredicts the percolation threshold. This is because
an overlap of particles’ excluded volumes does not guarantee
a formation of an infinite cluster.

In order to predict the transport properties of a heteroge-
neous material, such as a flowable electrode, above a perco-
lation threshold, both the percolation network topology and
interparticle resistance to transport are required.1 We can now
utilize our theory toward analytically calculating the network
topology. In Sec. II, we define the particle contact number dis-
tribution, Pψ(k), as the probability of a random particle to have
k contacts, whereψ is the volume fraction of all particles. Now,
let P̃ψ(k) be the contact number distribution for the particles
belonging to the percolation network. There are Pψ(k) parti-
cles in step zero of our “walk.” They lead to a dead end with
the probability Pk ,0(∞) = P1,0(∞)k as per Eq. (13). If they do
not lead to a dead end, then the target particle belongs to the
percolation network. Hence,

P̃ψ(k) = Pψ(k) ·
(
1 − P1,0(∞)k

)
. (17)

Equation (17) defines the percolation network topology and
is thus a crucial result toward an analytical calculation of the
heterogeneous material’s transport properties. Though P̃ψ(k)
is primary, to simplify visualisation, we will plot a percola-
tion probability which is a fraction of particles belonging to
the percolation network,

∑∞
k=0 P̃ψ(k). Singling out the Poisson

distribution from Eq. (17), we get

P̃ψ(k) =
αke−α

k!
−

[
αP1,0(∞)

]k exp
[
−αP1,0(∞)

]
k!

× exp
[
α(P1,0(∞) − 1)

]
, (18)

which is trivial to sum up

∞∑
k=0

P̃ψ(k) = 1 − exp
[
α(P1,0(∞) − 1)

]
. (19)

The percolation probability as a function of particle vol-
ume fraction is shown in Fig. 4 (black curve). At ψ(l/d) = 1,

FIG. 4. Predicted percolation probability as a function of particle adjusted
concentrationα (upper axis) and particle volume fraction times particle aspect
ratio (lower axis). The fraction of particles without contacts is shown for
comparison.

80% of particles belong to the percolation network and 8% are
single; hence, 12% of particles belong to finite size clusters.
Atψ(l/d) = 1.5, we have 96.5% and 2.3% for network particles
and single particles. At ψ(l/d) = 2, over 99% of all particles
belong to the percolation network.

IV. CONCLUSION

Our goal was to develop an analytical theory describing
the structure of a system of randomly oriented penetrable rods
and valid for a broad range of their concentrations. The theory
should allow further derivation of various bulk properties. In
the present paper, we made an analytical prediction of the rod
system topology. We found a contact number distribution for
a single particle, Pψ(k), and a contact number distribution for
a particle subsystem forming an infinite cluster called a perco-
lation network, P̃ψ(k). Based on P̃ψ(k), we found the fraction
of particles in the percolation network, i.e., the percolation
probability; see Fig. 4.

We showed that the well-known scaling law
ψ(l/d) = const. is topological in origin and particle systems
with the same adjusted concentration, or the same ψ(l/d), are
topologically identical. A specific case of this law is the con-
dition for a percolation threshold, namely, ψc(l/d)≈ 0.63. This
condition is in excellent agreement with simulations and comes
from an analytical consideration only. At ψ(l/d) = 2, nearly
every particle belongs to the percolation network. Our the-
ory, without relying on simulations, has a potential for further
calculations. For example, one can account for interparticle
forces,38,39 influence of solid interfaces,14,40 and particle align-
ment by the electrolyte flow.41 All these effects lead to an
alteration of the probability to touch the target particle, p, in
Eq. (7). Future work can also relate bulk material properties to
the distributions found in the present paper (P̃ψ(k) to electric
conductivity and Pψ(k) to viscosity).

SUPPLEMENTARY MATERIAL

See supplementary material for some auxiliary calcula-
tions mentioned in Secs. II and III, namely, the calculation of
a particle contact configuration space volume, and information
on evaluating several sums while deriving Eqs. (12) and (13).
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