1OP Publishing

Journal of Physics: Condensed Matter

J. Phys.: Condens. Matter 29 (2017) 084003 (10pp)

doi:10.1088/1361-648X/29/8/084003

The effect of surface transport on water
desalination by porous electrodes
undergoing capacitive charging

Amit N Shocron and Matthew E Suss

Faculty of Mechanical Engineering, Technion—Israel Institute of Technology, Haifa, Israel

E-mail: mesuss@tx.technion.ac.il

Received 24 July 2016, revised 28 October 2016
Accepted for publication 6 November 2016
Published 16 January 2017

Abstract
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Capacitive deionization (CDI) is a technology in which water is desalinated by ion
clectrosorption into the electric double layers (EDLs) of charging porous clectrodes. In recent
years significant advances have been made in modeling the charge and salt dynamics in a CDI
cell, but the possible effect of surface transport within diffuse EDLs on these dynamics has
not been investigated. We here present theory which includes surface transport in describing
the dynamics of a charging CDI cell. Through our numerical solution to the presented models,
the possible effect of surface transport on the CDI process is elucidated. While at some model
conditions surface transport enhances the rate of CDI cell charging, counter-intuitively this
additional transport pathway is found to slow down cell charging at other model conditions.
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Introduction

Capacitive deionization (CDI) is an emerging technology
typically applied to the desalination of brackish feedwaters
[1], but also to organic solvent remediation [2], water soft-
ening [3], ion separations [4], microfluidic sample preparation
[5], and sea water desalination [6]. The classic CDI cell con-
sists of two microporous carbon electrodes sandwiching a
porous dielectric separator, see figure 1(a). The electrodes are
charged by either a constant voltage or constant current [1,
7], resulting in the migration of salt ions from the feedwater
towards the oppositely charged electrode, and their storage
within micropore electric double layers (EDLs). The latter
process is referred to as the electrosorption of salt ions [8,
9]. The feedwater flows most often between the two charging
electrodes [1], although flow can also be through the elec-
trodes themselves [10—12]. Alternative CDI cell architectures
utilize suspension electrodes, such as flow or fluidized bed
electrodes [6, 13, 14], and include ion exchange membranes
along the inner electrode surfaces [15]. The porous electrodes
of CDI cells typically contain a multiscale pore structure,
which includes a through-electrode network of macropores
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which access smaller micropores [8]. The layout of the elec-
trode’s pore structure can vary for different materials, as for
example, activated carbon electrodes often consist of a collec-
tion of bound micron-scale microporous carbon particles [16],
while hierarchical carbon aerogel monoliths (HCAMs) have
micropores etched into the walls of a macroporous monolith
via thermal activation [10, 17].

Surface transport (ST) refers the movement of ions in EDLs
tangentially to the charged interface due to, for example, tan-
gential electric fields or tangential gradients in ion concentration
[18]. There is an extensive literature investigating the effects of
ST in electrokinetic systems employing diclectric media such
as planar dielectric walls [19-23], porous dielectric media
[24-28], dielectric solid-liquid colloidal suspensions [29-31],
and also for electrochemical systems employing charging
planar metal electrodes [32, 33]. By contrast, the literature is far
sparser on the topic of ST in charging conductive porous media
such as porous carbons electrodes, despite the widespread
application of such electrodes in energy storage systems and in
water desalination by CDI [8, 34]. To our knowledge, the latter
literature consists solely of the work of Mirzadeh et al, who pre-
sented theory and a numerical model capturing the effect of ST
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on the charging dynamics of the porous electrodes of superca-
pacitors [35], and of Vol’fkovich et al, who presented measure-
ments of surface conductivity as a function of applied potential
in porous carbons [36]. We know of no previous works which
investigate the effect of ST in porous electrodes on desalination
and charging dynamics in a CDI cell. ST (and more specifically
surface conductivity) may be significant in CDI, as during cell
charging the electrosorption of ions into the EDL from the bulk
electrolyte can result in a high surface to bulk conductivity ratio
(a high Dukhin number) [37].

Theoretical models of CDI cells typically employ mac-
roscopic porous electrode (MPE) theory coupled to an EDL
structure model [1, 16]. MPE theory involves volume aver-
aging local (in-pore) transport equations over a suitable control
volume which allows for averaging over the complex geom-
etry present in random porous media, and MPE theory has
also been applied to energy storage systems such as batteries
and supercapacitors [38—40]. For CDI, MPE theory was first
implemented by Johnson and Newman coupled to a simple
Helmholtz-type model of the EDL along pore surfaces [41].
Several decades later, Biesheuvel and Bazant coupled MPE
theory to a Gouy—Chapman EDL along pore surfaces [37], as
did Gabitto and Tsouris [42]. Shortly thereafter, Biesheuvel
et al proposed using instcad an EDL structure model which
assumes a common clectrostatic potential and concentration
within the volume of strongly confined micropore geometry,
which was termed the modified Donnan EDL model [43, 44].
The latter model captured the multiscale nature of CDI elec-
trodes and has been fitted to experimental data using several
fitting parameters such as the Stern layer capacitance and a
non-electrostatic attractive potential [45-48]. In addition,
Gabitto and Tsouris developed a model for CDI by multiscale
porous electrodes via a two-step volume averaging technique
[49]. Building upon previous CDI theoretical models, we here
expand them to include the effect ST in CDI cells, and apply
the theory to understand the effect of ST on desalination and
cell charging dynamics in both uni-and multi-scale porous
clectrodes. Counter-intuitively, we find that at some model
conditions, the effect of ST (an additional transport pathway
for ions) is to slow down cell charging.

Theory

To develop the theory of ST in CDI cells, we begin by
describing transport of salt and charge in the electroneutral
bulk of a macropore (see figure 1). For a binary and symmetric
electrolyte with equal anion and cation diffusivities, non-
dimensional salt and charge balance equations are given by:
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where ¢ is local salt concentration in the pore bulk scaled
by the initial pore bulk salt concentration, ¢,, and ¢ is the
local bulk electrostatic potential non-dimensionalized by the
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Figure 1. (a) Schematic of a typical CDI cell with feedwater
flow between the two electrodes. Schematics (b) and (c) show
the pore structures investigated in this work, which include (b)
solely through-electrode macropores, and (c) through-electrode
macropores which access micropores.

thermal voltage. Further, 7 is time scaled by the characteristic
diffusion time across the characteristic pore size, defined by
D= hf,/D, where D is the diffusivity of both anion and cation
and h,, is the pore volume divided by pore surface area [37].
The parameter £, is used as the characteristic lengthscale for
the scaled bulk coordinates X, ¥, and Z. During cell charging,
counterions electromigrate towards macropore walls (figure
1(b) and (c)) or into micropores (figure 1(c)) while coions
electromigrate away. This results in the formation of non-
electroneutral EDLs along the macropore wall with a char-
acteristic thickness given by the Debye length, A\p, and also
within micropores where the characteristic geometric size is
often on the order of Ap. Including the EDLs in the model
domain requires a solution of the coupled Poisson—Nernst—
Plank equations, which can be numerically challenging as the
EDLs and micropores are often significantly smaller than the
macropore size, i,. An alternative method for thin EDLs is to
instead model the effects of EDL charging on the bulk domain
via effective flux boundary conditions [32, 33, 50]. For the
case of ion transport between a diffuse EDL and bulk domain,
and surface (tangential) transport of ions within the diffuse
EDL, Chu and Bazant presented the following general effec-
tive flux boundary conditions at the location of the EDL [32]
(e.g.atz =0):
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where the tilde refers to variables of the EDL (inner) domain.
The EDL has inner coordinates X and y parallel to the pore
surface and non-dimensionalized by hj, and Z perpendicular
to the surface and scaled by \p, with Z = 0 being the loca-
tion of the solid wall. Further, ﬁ is the surface gradient
[50], € is the ratio Ap/hy, and p is the local net charge den-
sity in the EDL, defined as (¢. — ¢,)/2, where ¢, and ¢ are,
respectively, the anion and cation concentration in the EDL
non-dimensionalized by c¢,. ¢ is the local mean ion concentra-
tion in the EDL, defined as (& + ¢,)/2, and ¢ is the excess
potential in the EDL [32]. Also, ¢ is the non-dimensional
charge density in the EDL and W is the non-dimensional EDL
excess salt density in the EDL, defined as [33]:
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Additionally, Chu and Bazant derived effective flux boundary
conditions for the case of a Gouy—Chapman (GC) EDL, which
were given as the following [32, 33]:
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where C is the zeta potential, defined as the induced potential
drop across the GC EDL. While a GC EDL can be used to
approximate the EDL structure along macropore walls, such a
model cannot describe EDL structure in micropores due to a
characteristic geometric size which is on the order of Ap [45].
Instead, for micropores a Donnan EDL model is used, which
assumes uniform micropore electric potential and concentra-
tion, reflecting the geometric confinement and resulting strong
EDL overlap in micropores [43, 44, 51]. Modified versions
of the Donnan model have been used to fit model results to
experimental data, where modifications include a Stern layer
and an additional adsorption potential [47], or capture the
amphoteric nature of the carbon electrode [52]. To model ST
in CDI systems with micropores, we here derived the effective
flux boundary conditions for the case of a Donnan EDL (see
appendix A for detailed derivation):
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where ey = Ini/hp, Iy is the depth of the micropores,
Cmi = (Cmic 1+ Cmia)/2 1s the micropore salt concentration, and
Omi = (Cmic — Cmi.a)/2 is the micropore charge density, here ¢ i
is the concentration of ion i in the micropore nondimensional-
ized by cp. We note that, in equations (11) and (12), all of the
micropores’ excess salt and charge participates in ST, and thus
these equations give an upper limit of ST due to micropore
EDLs. A more refined model capturing precisely micropore
ST requires resolving micropore geometric features. However,
such a model is beyond the scope of the current work. We
note that some CDI electrode materials with long micropores
(relative to micropore hydraulic diameter), such as activated
carbon electrodes consisting of microporous micron-scale
carbon particles, may result in most of the micropore ionic
charge being unavailable for ST. However others, such as
hierarchical activated carbon acrogels (HCAMs), where short
micropores are etched into macropore walls, may exhibit a
more significant fraction of micropore charge and salt contrib-
uting to effective tangential fluxes.

Equations (1) and (2) with either equations (9) and (10) or
equations (11) and (12) as boundary conditions can be applied
to study the macropore salt and charge dynamics. However,
these models require accounting for the complexity of the
macropore geometry, which is often difficult for random porous
media. To avoid geometric complexities, a common technique
is to develop macroscopic models based on volume averaged
variables [38]. As described in Biesheuvel and Bazant [37], via
integrating the pore bulk transport equations, here equations (1)
and (2), over a suitable representative volume, the normal flux
component of the effective flux boundary conditions can be
converted to volumetric source terms in a macroscopic model.
The latter authors developed such volumetric source terms
for the case of ion electrosorption into GC EDLs but did not
include the effect of ST within the EDL [37]. We here extend
the latter work to include ST via volume integrating the pore
bulk transport equations and implementing the effective flux
boundary conditions given by equations (9) and (10). The com-
plete procedure is shown in appendix B, and we here present the
results for the 1D form of the macroscopic transport equations:
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We denote equations (13) and (14) as our 1D ST model, and
¢ and ¢ represent volume-averaged bulk concentration and
potential, respectively, while w and g are the surface area aver-
aged excess salt concentration and charge, respectively, see
equations (B.5) and (B.6). The variables X and 7 are defined
as X = x/Le and f = tD/Lz, where x is the dimensional loca-
tion, see figures 3(a) and (b), ¢ is the dimensional time and
L. is the electrode’s thickness. As shown in equations (13)
and (14), the tangential flux components of the effective flux
boundary conditions have been converted to volumetric flux
terms in the macroscopic equations. We can compare our 1D
ST model to the 1D model presented by Mirzadeh et al for ST
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in a supercapacitor electrode (equations (12) and (13) of that
work), [35] which we reproduce here:
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As can be seen, our 1D ST model differs from the Mirzadeh
model, as the latter model did not include the effect of sur-
face conduction driven by gradients in the excess potential. In
other words, equations (15) and (16) can be derived by volume
integrating the bulk equations and implementing equations (3)
and (4) with ﬁ 12 = ( as effective flux boundary conditions, as
we show in appendix B. All models in this work were solved
using COMSOL Multiphysics 4.4 (COMSOL Inc., Sweden).

Results

In figure 2(a), we compare the charging dynamics predicted
by the Mirzadeh model (equations (15) and (16)) to our 1D ST
model (equations (13) and (14)), and to the 1D model without
ST presented by Biesheuvel and Bazant (the BB model) [37].
The BB model can be obtained from equations (13) and (14) if
the ST terms are neglected (the two right-most terms). In this
figure, g represents the time-dependent charge stored in the
electrode after applying the voltage, and ¢ is the charge stored
at steady state. For the time axis, we non-dimensionalized
time by the transmission line timescale 7y, = /\DLgthD [35,
53]. To contrast our 1D ST model to the Mirzadeh model, we
investigate the simpler case where desalination is inhibited
during cell charging by using boundary conditions of ¢ = 1
and ¢ = 0 at the inner electrode edge, ¥ = 0. We note that
this concentration boundary condition, which was also used
in the work of Mirzadeh et al [35, 54] is most appropriate
for modeling supercapacitor systems where salt concentration
in the electrode is not expected to vary during cell charging.
We further used a zero flux boundary condition (both bulk
and surface flux) at the outer electrode edge, ¥ = 1, and initial
conditions of ¢ = 1and ¢ = V = 7.5 along the length of the
electrode, where V;; is the voltage applied to the solid phase
of the electrode. As seen in figure 2(a), including ST leads to
significantly faster dynamics in both the Mirzadeh model (as
previously reported [35]) and our 1D ST model, when com-
pared to the BB model. However, we can also observe that our
1D ST model demonstrates slower charging compared to the
Mirzadeh model for most of the charging process. The latter
is due to the inclusion in the 1D ST model of ST driven by
gradients in the excess potential. The excess electric field is
in the opposite direction of the bulk electric field, as is shown
in figure 2(b) where we plot excess potential at 7 = 0, which
we denote as f (blue lines), and also plot the bulk potential,
@ (black lines).

We now utilize our 1D ST model to develop insight into
the effect of ST on the cell charging and salt dynamics in a
CDI cell, thus restricting ourselves for the moment to solely
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Figure 2. (a) Predicted electrode charge stored, g/q, of our 1D
ST model, the Mirzadeh model [35], and the BB model [37] with
supercapacitor boundary conditions and € = 0.1, V; = 7.5. (b) Plot

of the bulk potential, ¢, and excess potential at the pore wall,
predicted by the 1D ST model.

macroporous CDI clectrodes with GC EDLs along the pore
walls (figure 1(b)). For predicting CDI cell performance,
appropriate boundary conditions must be used which allow
for desalination at the electrode’s inner edge. Thus, we solve
our 1D ST model for cells which include a porous separator
layer adjacent to the porous electrode, and for two physical
scenarios in the separator, see figures 3(a) and (b). For sim-
plicity the separator layer’s porosity is set to be equal to that
of the electrode. The first scenario, shown schematically in
figure 3(a), models the case of a stagnant diffusion layer
(SDL) adjacent to the electrode, which has been used previ-
ously to model CDI cells [37]. The governing equations in the
SDL are:

oc 0%

o ot 7
o (_0¢
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and the boundary conditions at the edge of the separator are:

]

b=tz -005= 1+ B|c__o05 =0 (19)

The second case, shown schematically in figure 3(b), is the
case of a CDI cell which is symmetric about its midline (the
midline of the separator). Such a case can approximate the
physical scenario of batch mode operation whereby a batch of
feedwater in the cell is desalted while flow is turned off [10].
For the symmetric cell, the boundary conditions at the midline
of the separator are:
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Figure 3. (a) A schematic of the electrode with adjacent stagnant diffusion layer (SDL). (c) and (e) Show results from the cell with an
adjacent SDL layer, using either our 1D ST model or the BB model to describe the electrode. (c) Shows non-dimensional electrode charge
stored, g/q, versus time scaled by the transmission line timescale, 711, and (e) shows the concentration in the electrode and SDL, ¢, versus
non-dimensional position, x/L.. (b) A schematic of the symmetric cell, and (d) and (f) show results using either our 1D ST model or the BB
model to describe the electrode. All model results are for ¢ = 0.1, Vi = 7.5, Ispr. = lgep/2 = 0.05L..

For both cases (SDL and symmetric cell), at the electrode’s
outer edge we applied zero flux boundary conditions. The ini-
tial conditions for both cases are ¢ = 1 throughout the elec-
trode and separator, ¢ =1.5 in the electrode, and a linear
potential profile in the separator from ¢ = 0 at ¥ = —0.05 to
¢ =75atx =0.

For the case of a CDI electrode with an adjacent SDL, we
can see from figure 3(c) that the 1D ST model’s predicted
charging (dashed line) is significantly faster than the BB
model which does not consider ST (solid line), as might be
expected given the results of figure 2(a). Figure 3(e) shows
the concentration profiles and desalination dynamics at var-
ious times during cell charging for the 1D ST model (dashed
lines) and the BB model (solid lines) for the cell with adjacent
SDL. Here, we can observe a sharp discontinuity in the slope
of the concentration profile at the separator/electrode inter-
face (vertical dashed line) for the 1D ST model. The latter is
due to the discontinuity in transport mechanisms across this
interface, with ST occurring on the electrode side but not on
the SDL side. For both the 1D ST and BB models, we see the
expected result that EDL charging and so desalination begins

at the electrode/SDL interface and then at later times prop-
agates deeper into the electrode [37]. Conversely, for the sym-
metric cell, the 1D ST model predicts slower cell charging
compared to the BB model, see figure 3(d). The latter results
arc highly counter-intuitive, as they suggest that the inclu-
sion of an extra transport pathway for ions (ST) results in
slower cell charging. These counter-intuitive results can be
understood through the concentration profiles for the sym-
metric cell shown in figure 3(f). Here, we can see that during
charging, as no ions can enter the separator space from the
boundary at ¥ = —0.05 due to symmetry, the separator space
(¥ <0) is strongly desalted relative to results of figure 3(e).
The desalination of the separator space is especially strong
for the 1D ST model in figure 3(f), where concentration in the
separator space can be reduced by approximately an order of
magnitude (see the red dashed curve). This region of very low
ion concentration acts to slow down the charging dynamics
by reducing the local ionic current in the separator space, as
seen by equation (18), or in other words by introducing a large
resistor to ionic current into the system. In summary, the pres-
ence of ST in the symmetric cell leads to a more effective
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Figure 4. (a) Model results for non-dimensional charge stored in EDLs, q/q,, versus time scaled by the diffusion timescale, 7, for three
2D models, including the ‘No ST’ model (solid line), the ‘macropore ST’ model (dashed line), and the ‘macro and micropore ST’ model
(dotted-dashed line). (b)—(d) Show model results of concentration distributions in the macropore entrance at t/7, = 1E — 7, (e)—~(g) show
the concentration distributions for t/m, = 1E — 4, and (h)—(j) show the concentration distributions ¢/7, = 1E — 3. The parameters used for

these results include € = 0.001, e,,; = 0.001, and V; = 12.5.

desalting of the separator space, which in turn significantly
slows the electrode charging.

As the 1D ST model employs a GC EDL, it simulates an
electrode consisting solely of macropores with thin EDLs,
as depicted schematically in figure 1(b). However, CDI elec-
trodes are typically multiscale, consisting of both through-
electrode macropores which access micropores with strongly
overlapped EDLs, see figure 1(c). Thus, to capture the multi-
scale nature of CDI electrodes, we developed a 2D model of
a single slit-shaped macropore with uniform cross-sectional
area, and with micropores present along the macropore wall
at uniform intervals, as drawn schematically in figure 1(c).
For this model, we used equations (1) and (2) to govern the
macropore bulk dynamics, and used an alternating arrange-
ment of the GC effective flux boundary conditions for
macropore walls, and the Donnan effective flux boundary con-
ditions for micropores to describe electrosorption into EDLs
and ST within EDLs. We do not develop a 1D macroscopic
set of equations for the case of multiscale electrodes, as such
an approach would average over the serial nature of the EDL
arrangement. As we show below, this local serial arrangement
can have important implications in the cell charging and desal-
ination dynamics. The importance of capturing local changes
in surface conditions in charging porous clectrodes was also
shown by Mirzadeh et al, for the case of a ‘patchy’ electrode
with alternating GC EDLs and zero surface charge areas [35].

For the 2D model, the macropore length used was
L. = 100h,, and the alternating arrangement of Donnan
(micropore) and GC (macropore wall) effective flux boundary

~

conditions was located along the y =1 boundary. The

first micropore was positioned at ¥ = 0.2, the width of all
micropores was AX = 0.1, and the distance between neigh-
boring micropores was AX = 0.4. Thus, micropores were
equally spaced along the macropore wall for simplicity. We
added an SDL layer adjacent to the pore inlet with thickness
L¢/20, used a symmetry condition along the macropore mid-
line (¥ =0), and imposed no flux boundary conditions at
the pore closed end. The initial conditions used were ¢ = 1
throughout the system, ¢ = Vi = 12.5in the macropore, and a
linear potential profile in the SDL along the X axis from =0
at X = —0.05 to $ = 12.5at X = 0. In figure 4(a), we show
the charging dynamics of three 2D models versus time non-
dimensionalized by the diffusion time m = Lg/D. The three
models include the ‘macropore and micropore ST’ model
where the macropore wall and micropore EDLs were mod-
eled using the boundary conditions (9)—(12), the ‘macropore
ST’ model where the terms including the surface gradient, Q,
were dropped out of equations (11) and (12), and the ‘no ST’
model where the terms including v, were dropped out of equa-
tions (9)—(12). As can be seen, the ‘macropore and micropore
ST’ model predicts the fastest charging, which is consistent
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with the results of figure 3(c) where it was demonstrated
that ST enhances CDI cell charging kinetics when including
an adjacent SDL. Counter-intuitively, the ‘macropore ST’
model shows slower cell charging than the ‘no ST’ model.
Here, the salt dynamics can shed insight into the observed
counter-intuitive behavior. To this end, figures 4(b)—(j) show
the 2D concentration fields in the macropore inlet (0 <X <2)
for each model at various charging times. As can be seen in
figures 4(b)—(d), at the time t/m = 1E — 7 desalination zones
appear associated with the location of the micropores in all
three model cases, with the strongest desalination occurring
closest to the pore entrance. Figures 4(e)—(g) demonstrate that
at a later time t/7p = 1E — 4, significant differences between
the three models can be observed, where a large depletion
region is seen near to y = 1 for the ‘macropore ST’ model
relative to that of the other two model cases. This latter deple-
tion region can act to slow down the macropore charging,
due to the introduction of local areas of high ionic resistance
within the macropore, explaining the counter-intuitive results
of figure 4(a). In figures 4(h)—(j), we see that at the even later
time ¢t/m = 1E — 3, we can see that the pore entrance is now
more uniformly desalted, with the lowest concentration again
observed for the ‘macropore ST’ model.

Conclusions

In conclusion, we developed theory which includes ST in
describing the charge and salt dynamics in a CDI cell. We
presented an effective flux boundary condition for micro-
pore Donnan EDLs, a set of 1D macroscopic transport equa-
tions for macroporous CDI electrodes, and a 2D model for a
multi-scale CDI electrode. Through these models, the possible
effect of ST on the CDI process is elucidated. It was observed
that at some model conditions ST enhances cell charging
rates, but counter-intuitively this additional transport pathway
is found to slow down the cell charging at other model condi-
tions. While we here begin to explore the effects of ST in CDI
cells, future models should include additional complexities
necessary to accurately predict data from CDI cells, such as
the effect of the Stern layer, and geometric as well as steric
effects in the highly constrained micropores.

Acknowledgments

We would like to acknowledge Mathias Backbo Anderson for
insightful discussions, and funding from the Israel Science
Foundation in the framework of the Isracl National Rescarch
Center for Electrochemical Propusion (INREP) project.

Appendix A

In this appendix, we derive effective flux boundary conditions
for the case of micropores described by a Donnan EDL. The
Donnan model assumes a spatially uniform potential within
the micropore. Via a Boltzmann distribution, the Donnan
potential drop between the micropore and macropore can be
related to the micropore concentration [44]:

[ = Ce A0, (A.1)

Here ¢ is the concentration of ion i in the micropore non-
dimensionalized by ¢,, z; is the valance of ion i, and A$D is
the Donnan potential non-dimensionalized by the thermal
voltage. Next, we introduce the parameters ¢,; and Gy repre-
senting, respectively, micropore salt concentration and charge
density:

Cri o =+ G R N
Epy = —mic T Cmia > wia _ & cosh Adp (A2)
Omi = Lmic — Cmia ; Cmia _ —C sinh AQED (A.3)

where the expressions developed in (A.2) and (A.3) are valid
for the case of monovalent ions. We also notice that in the
micropores:

v = Adp.
In order to substitute micropore quantities into the general

effective flux boundary conditions given by Chu and Bazant
[32], and here as equations (3) and (4), we notice that:

(A.4)

- )\ OCN o 1 lmiN =N o A
Ew:h_]?)fo (C_c)dzzh—pj(; (€ — 0)dz = emi(Cmi — ©)

(A.5)
_ )\D x 1 ]miN .
== dz = — dz = EmiOmi
€q hpfopz hpopz EmiOmi  (A.0)
e ), PP = emiomi % (Adp) (A7)
5](‘) cNpdz = 5migmj€s(A$D)' (A.8)

Substituting (A.5)—(A.8) into (3) and (4) lead to:

Emia(CLA_E) = Emi ﬁ[ﬁ(anl - 6)+ Omi ﬁ({g + Ag[))] B (06)

ot 0z (%,9,0)
(A.9)
ElmdL/‘\m = Emi ﬁ@ [ﬁ a'mi + E;ml /vi ($ + Aé;D) -C ﬁ 5] - (6%]
ot [o/4 S
(X.¥.0)
(A.10)

For the case where we neglect the Stern layer, we can simplify
by noting that the Donnan potential drop equals the potential
drop between the electrode surface and the macropore, such
that:

V(§ + Adp) = V@ + Gy~ §) = l(dy) = 0
where gz?el is the non-dimensional solid phase potential of the
electrode, which we assume is held constant throughout the

charging process. Substituting (A.11) into (A.9) and (A.10)
lead to:

(A.11)

ot 52 (A12)

(%.,5,0)



J. Phys.: Condens. Matter 29 (2017) 084003

A N Shocron and M E Suss

o5 —~ e~ _0d
e :smVs[Vs&lm—ch]—(cijJ (A.13)
ot oz || .
(X,7,0)
Appendix B

We here derive the macroscopic transport equations of the 1D
ST model, equations (13) and (14). We begin by the volume
integration of the local transport equations, equations (1) and
(2), over the non-dimensional pore volume, Vp, of the charac-
teristic volume element presented in figure B1. The volume
element consists of a solid phase and a liquid phase with a
bulk electrolyte and thin EDL. We begin by integrating equa-
tions (1) and (2) over \’/;, and applying the Divergence theorem
[37,38]:

0c¢ & =2 o o o~ P
Ly = cdv=|[ 7. Ve i Ve
fvpa?d R [f;vn (V &ydA +Lpn (VC)dA]
(B.1)

Ozfvﬁ(éﬁgf;)d\?:[fgﬁ(é?q?)dg+fxﬁ~(éﬁ$)d2]
' ' ' B.2)

where 7 is the inwards direction normal to a surface, the
dimensionless areas and volumes are defined by A = A/K,
and V = V/hg, and A\V represents the cross-sectional area of
the pores and ;fp the pore surface arca.

Next we define volume-averaged bulk concentration ¢ and

potential, ¢, as:
1

E:? \7,,6dv (B.3)
P

s L[z

¢—7 Vpaﬁd . (B.4)
P

We also define area-averaged EDL quantities, such as surface
area-averaged excess salt concentration, W, and charge, g [37]:

1

a (B.5)
g=— [ gdd
A\p i . (B.6)

We can then rewrite the first term of equation (B.1) using (B.3)
and re-scaling time to the electrode diffusion time, 7 = tD/L:

s o KV oz
f@_ch:Vp@:p_p’a_c' (B.7)

The cross-sectional flux terms of equations (B.1) and (B.2)
can be rewritten using volume averaged parameters in the
following way:

fﬁ@adxz A-(Veyd=|[ v

v Av+As Vot ch:

S
-, </ | X /

Figure B1. Schematic of a representative volume element used in
the volume averaging process, with non-dimensional parameters
shown. A, is the non-dimensional cross-sectional area of the pores,
\713 is the pore volume, Kp is the pore surface area, and \7“,[ is the total
volume of the element including the solid phase [37].

(B.9)

where we rescaled the gradient, divergence and Laplacian
operators with the electrode thickness, L. Further, in equa-
tion (B.9) we assumed that variables are slowly varying at the
pore-scale, and thus fﬁ l evodv ~ V,& v & [37].

Next we rewrite th:e last term in the right hand side of
equations (B.1) and (B.2) using the effective flux boundary
conditions, equations (9) and (10), and again assume slowly-
varying variables to obtain:

Aphﬁ = = = T ow
[ - @ead ~—L [VS( Vine+g sdn——_]
A . ot
(B.10)
~ &prh -

fxn-(c

We can now place equations (B.7)—(B.11) into (B.1) and
(B.2), and formulate our 1D macroscopic transport equations:

~0c 0% ~| 8(_0Olnc 0p) ow
V =V, A RS [ y'y g— | — —
P o2 © p[ (W ox +q(’)x) Hf]

)
)
<D
-
&
?

or  Pox? ox
(B.12)
~ 0 (_0¢ ~|o(_ome  _o¢ oq
0= V—|o—|+eA, | = +wv—-—=1
pax(cax) Ep[ax(q ax wax) o
(B.13)
Using the definition i, = V,/A,, we find that:
A, A, K
TP:_ZP._p:L (B.14)
Nom
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Thus, we can re-write (B.12) and (B.13) as:

oC +ew) 0% Ei W@lnE +_8_5 B15
o oxr ' “oe\"oxr | Tox (B.15)

Gq 0¢ dlne _0¢

“or ax( 8x)+ ax(q ax +Wax) (B.16)

where equations (B.15) and (B.16) are identical to equa-
tions (13) and (14).

We here also briefly explain how to obtain the Mirzadeh
model [35], equations (15) and (16), via volume averaging
and utilizing effective flux boundary conditions. To begin, we
re-write the effective flux boundary conditions, equations (3)
and (4), but neglecting the excess potential term:

ow oc

A I VAR A/

Eat e (W HGVo) — dz (B.17)
0 o o e~ (.00
5—Z:€VS~(VSq+st¢)— C;f (B.18)
or 0z (%.7.0)

Beginning with volume integrated bulk equations (B.1) and
(B.2), but instead using equations (B.17) and (B.18) as the
effective flux boundary conditions, we can derive the model
presented by Mirzadeh et al [35]:

oc+ew) 9% d(ow  _9¢
o o © ax(ax "%k ®-19)
.97 d¢ -l
“or 6‘x( 8x)+ 8x(8x Tor ) (B:20)
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