1) PM Biesheuvel, MZ Bazant, RD Cusick, TA Hatton, KB Hatzell, MC Hatzell, P Liang, S Lin, S Porada, JG Santiago, KC Smith, M Stadermann, X Su, X Sun, TD Waite, A van der Wal, J Yoon, R Zhao, L Zou, ME Suss, arXiv preprint arXiv:1709.05925.

Published or in press

55) I Atlas, J Wu, AN Shocron, ME Suss. “Spatial variations of pH in electrodialysis stacks: Theory“, Electrochimica Acta, 413, 140151, 2022.

54) ME Suss, Y Zhang, I Atlas, Y Gendel, EB Ruck, Volker Presser. “Emerging, hydrogen-driven electrochemical water purification“, Electrochem. commun. 136, 107211, 2022.

53) A Arunchander, S Abu-Khalla, S Abdalla, ME Suss. “Chloride-Tolerant, Inexpensive Fe/N/C Catalysts for Desalination Fuel Cell Cathodes“, ACS Appl. Energy Mater. 5, 1743, 2022.

52) ME Suss, Y Zhang, I Atlas, Y Gendel, EB Ruck, V Presser. “Emerging, hydrogen-driven electrochemical water purification“, Electrochem. commun., 136, 107211, 2022.

51) P Rewatkar, D Nath, PS Kumar, ME Suss, S Goel. “Internet of Things enabled environmental condition monitoring driven by laser ablated reduced graphene oxide based Al-air fuel cell“, Journal of Power Sources, 521, 230938, 2022.

50) R Uwayid, EN Guyes, A Shocron, J Gilron, M Elimelech, ME Suss. “Perfect divalent cation selectivity with capacitive deionization“, Water Research, 210, 117959, 2022.

49) S Abu Khalla, I Atlas, S Litster, ME Suss. “Desalination Fuel Cells with High Thermodynamic Energy Efficiency“, Environ. Sci. Technol., 56, 1413, 2022.

48) S Abdalla, SA Khalla, ME Suss. “Voltage loss breakdown in desalination fuel cells“, Electrochem. commun. 132, 107136, 2021.

47) F Yang, Y He, L Rosentsvit, ME Suss, X Zhang, T Gao, P Liang. “Flow-electrode capacitive deionization: a review and new perspectives“, Water Research, 200, 117222, 2021.

46) R Ronen, AD Gat, MZ Bazant, ME Suss. “Single-flow multiphase flow batteries: Theory“, Electrochimica Acta, 389, 138554, 2021.

45) AN Shocron, EN Guyes, HHM Rijnaarts, PM Biesheuvel, ME Suss, JE Dykstra. “Electrochemical removal of amphoteric ions”, Proceedings of the National Academy of Sciences 118, e2108240118, 2021.

44) Eric N Guyes, Amit N Shocron, Yinke Chen, Charles E Diesendruck,  ME Suss, “Long-lasting, monovalent-selective capacitive deionization electrodes“, npj Clean Water 4, 22, 2021.

43) Rana Uwayid, Nicola M Seraphim, Eric N Guyes, David Eisenberg, ME Suss, “Characterizing and mitigating the degradation of oxidized cathodes during capacitive deionization cycling”, Carbon, 173, 1105-1114, 2021.

42) JG Gamaethiralalage, K Singh, S Sahin, J Yoon, M Elimelech, ME Suss, P Liang, PM Biesheuvel, RL Zornitta, LCPM de Smet, “Recent advances in ion selectivity with capacitive deionization“, Energy Environ. Sci., 14, 1095-1120, 2021 (Advance article).

41) L Amit, D Naar, R Gloukhovski, GJ la O’, ME Suss, “A single‐flow battery with multiphase flow“, ChemSusChem, 14, 1068-1073, 2021.

40) I Atlas, S Abu Khalla, ME Suss, “Thermodynamic Energy Efficiency of Electrochemical Systems Performing Simultaneous Water Desalination and Electricity Generation“, Journal of The Electrochemical Society, 167 134517, 2020.

39) AN Shocron, ME Suss, “Should we pose a closure problem for capacitive charging of porous electrodes?“, EPL (Europhysics Letters), 130, 34003, 2020.

38) R Gloukhovski, ME Suss, “Measurements of the Electric Conductivity of MWCNT Suspension Electrodes with Varying Potassium Bromide Electrolyte Ionic Strength“, Journal of The Electrochemical Society,  167, 020528, 2020.

37) J Ma, C Zhang, F Yang, X Zhang, ME Suss, X Huang, P Liang, “Carbon Black Flow Electrode Enhanced Electrochemical Desalination Using Single-Cycle Operation“,  Environmental Science & Technology, 54, 1177–1185, 2020.

36) I Atlas, ME Suss, “Theory of simultaneous desalination and electricity generation via an electrodialysis cell driven by spontaneous redox reactions”, Electrochimica Acta, 319, 813-821, 2019.

35) EN Guyes, T Malka, ME Suss, “Enhancing the ion size-based selectivity of capacitive deionization electrodes”, Environmental Science & Technology, 53 (14), 8447-8454, 2019.

34) S Abu Khalla, ME Suss, “Desalination via chemical energy: An electrodialysis cell driven by spontaneous electrode reactions”, Desalination, 467, 257-262, 2019.

33) E Halfon, ME Suss, “Electrodes which can be switched between a flowable and a static mode with exceptionally high conductivity”, Electrochemistry Communications, 99, 61-64, 2019.

32) P Ratajczak, ME Suss, F Kaasik, F Béguin, “Carbon electrodes for capacitive technologies”, Energy Storage Materials, 16, 126-145, 2019.

31) R Ronen, I Atlas, ME Suss, “Theory of flow batteries with homogeneous reactions”, Journal of the Electrochemical Society, 165 (16), A3820-A3827, 2018.

30)  SA Hawks, A Ramachandran, S Porada, PG Campbell, ME Suss, PM Biesheuvel, JG Santiago, M Stadermann, “Performance Metrics for the Objective Assessment of Capacitive Deionization Systems” Water Research, 152, 126-137, 2018.

29)  A Golovnev, ME Suss, “Percolation probability for a system of cylindrical particles”, Journal of  Chemical Physics, 149 (14), 144904, 2018.

28) E Remillard, A Shocron, J Rahill, ME Suss, C Vecitis, “A Direct Comparison of Flow-By and Flow-Through Capacitive Deionization”, Desalination, 444, 169-177, 2018.

27) ME Suss, V Presser, “Water desalination with energy storage materials”, Joule, 2 (1), 10-15, 2018. (Invited “Futures Energy” article)

26) ME Suss, “Size-based ion selectivity of micropore electric double layers in capacitive deionization electrodes“. Journal of The Electrochemical Society, 164 (9), E270-E275, 2017.

25) E Guyes, A Simanovski, ME Suss, “Several orders of magnitude increase in hydraulic permeability of flow-through desalination electrodes via laser perforations“. RSC Advances 7 (34), 21308-21313, 2017.

24) EN Guyes, AN Shocron, A Simanovski, PM Biesheuvel, ME Suss, “A one-dimensional model for water desalination by flow-through electrode capacitive deionization“. Desalination 415, 8-13, 2017

23) A Shocron, ME Suss, “The effect of surface transport on water desalination by porous electrodes undergoing capacitive charging“. Journal of Physics: Condensed Matter 29 (8), 084003, 2017.

22) S Pattarachai, M Zeiger, N Jäckel, A Tolosa, B Krüner, S Fleischmann, I Grobelsek, M Aslan, B Shvartsev, ME Suss, V Presser. “Enhanced performance stability of carbon/titania hybrid electrodes during capacitive deionization of oxygen saturated saline water“, Electrochimica Acta 224, 314-328, 2017.

21) HK Mutha, Y Lu, IY Stein, HJ Cho, ME Suss, T Laoui, CV Thompson, BL Wardle, EN Wang “Porosimetry and packing morphology of vertically-aligned carbon nanotube arrays via impedance spectroscopy“. Nanotechnology 28 (5), 05LT01, 2016

20) S Pattarachai, F Kaasik, B Krüner, A Tolosa, S Fleischmann, N Jäckel, MC Tekeli, M Aslan, ME Suss, and V Presser, “MXene as a novel intercalation-type pseudocapacitive cathode and anode for capacitive deionization“, Journal of Materials Chemistry A 4 (47), 18265-18271, 2016.

19) S Rubin, ME Suss, PM Biesheuvel, M Bercovici, “Induced Charge Capacitive Deionization”. Physical Review Letters 117 (23), 234502, 2016

18) ME Suss, K Conforti, L Gilson, CR Buie, MZ Bazant, “Membraneless flow battery leveraging flow-through heterogeneous porous media for improved power density and reduced crossover”. RSC Advances 6 (102), 100209-100213, 2016

17) H Cohen, S Ein Eli, M Jogi, ME Suss. “A novel class of suspension electrodes combining slurries and upflow fluidized beds”, ChemSusChem 9 (21), 3045-3048, 2016

16) G.J. Doornbusch, J Dykstra, PM Biesheuvel, ME Suss. “Fluidized bed electrodes with high carbon loading for water desalination by capacitive deionization” Journal of Materials Chemistry A, 2016, 4, 3642-3647.

15) S Porada, G Feng, ME Suss, V Presser, “Capacitive deionization in organic electrolytes: case study using propylene carbonate”, RSC Advances, 6 (7), 5865-5870, 2016.

14) PM Biesheuvel, HVM Hamelers, ME Suss. “Theory of water desalination by porous electrodes with immobile chemical charge” Colloid and Interface Science Communications, 2015, 9, 1-5.

13) S Schlumpberger, NB Lu, ME Suss, MZ Bazant. “Scalable and Continuous Water Deionization by Shock Electrodialysis.” Environmental Science & Technology Letters, 2 (12), 367–372, 2015.

12) ME Suss, S Porada, M Biesheuvel, J Yoon, V Presser, “Water desalination via capacitive deionization: What is it and what can we expect from it?Energy & Environmental Science, 2015, 8, 2296-2319

11) D Deng, W Aouad, WA Braff, S Schlumpberger, ME Suss, MZ Bazant, “Water Purification by shock electrodialysis: desalination, filtration, disinfection, and separations”. Desalination, 357 (2015): 77-83.

10) ME Suss, PM Biesheuvel, TF Baumann, M Stadermann, JG Santiago. “Spatially and temporally resolved measurements of salt concentration between charging porous electrodes for desalination by capacitive deionization”. Environmental Science & Technology, 2014, 48, 2008-2015.

9) ME Suss, TF Baumann, MA Worsley, KA Rose, T Jaramillo, M Stadermann, JG Santiago. “Impedance-based study of capacitive porous carbon electrodes with hierarchical and bimodal porosity”. Journal of Power Sources, 2013, 241, 266-273.

8)  K. Kalluri, M.M. Biener, M.E. Suss, M.D. Merrill, M. Stadermann, J.G. Santiago, T.F. Baumann, J. Biener, A. Striolo, “Unraveling the potential and pore-size dependent capacitance of slit-shaped graphitic carbon pores in aqueous electrolytes”. Physical Chemistry Chemical Physics, 2013, 15, 2309-2320

7) MA Worsley, SO Kucheyev, HE Mason, MD Merrill, BP Mayer, J Lewicki, CA Valdez, ME Suss, M Stadermann, PJ Pauzauskie, JH Satcher, TF Baumann. “Mechanically Robust 3D Graphene Macroassembly with High Surface Area”, Chemical Communications, 2012, 48, 8428-8430

6) ME Suss, TF Baumann, WL Bourcier, CM Spadaccini, KA Rose, JG Santiago, M Stadermann. “Capacitive desalination with flow-through electrodes”. Energy and Environmental Science, 2012, 5, 9511-9519

5) J Biener, M Stadermann, M Suss, MA Worsley, MM Biener, KA Rose and TF Baumann. “Advanced carbon aerogels for energy applications”. Energy and Environmental Science, 2011, 4, 656-667

4) ME Suss, A Mani, TA Zangle, JG Santiago. “Electroosmotic pump performance is affected by concentration polarizations of both electrodes and pump”. Sensors and Actuators A, 2010, 165, 310-315.

3) S Litster, ME Suss, JG Santiago. “A two-liquid electroosmotic pump requiring low applied voltage and power”. Sensors and Actuators A, 163,1, 2010

2) DG Strickland, ME Suss, TA Zangle, JG Santiago. “Evidence shows concentration polarization and its propagation can be key factors determining electroosmotic pump performance”. Sensors and Actuators B. 143, 2, 2009

1) Persat*, ME Suss*, JG Santiago. “Basic principles of electrolyte chemistry for microfluidic electrokinetics. Part II: Coupling between ion mobility, electrolysis, and acid–base equilibria”. Lab Chip, 2009, 9, 2454 – 2469

*Authors contributed equally to this work